Identification of Heterosis-Associated Stable QTLs for Ear-Weight-Related Traits in an Elite Maize Hybrid Zhengdan 958 by Design III

نویسندگان

  • Hongjian Li
  • Qingsong Yang
  • Lulu Gao
  • Ming Zhang
  • Zhongfu Ni
  • Yirong Zhang
چکیده

Heterosis plays a decisive role in maize production worldwide, but its genetic basis remains unclear. In this study, we explored heterosis for ear-weight (EW)-related traits using a North Carolina Experiment III design (Design III) population derived from the elite maize hybrid Zhengdan 958. Quantitative trait loci (QTL) analysis was conducted based on phenotypic data collected from five environments using a high-density linkage map that consisted of 905 single nucleotide polymorphisms (SNP). A total of 38 environmentally stable QTLs were detected, and the numbers for the Z1 and Z2 populations were 18 and 20, respectively. All environmentally stable QTLs for Z2 were characterized by the overdominance effect (OD), which indicated that overdominance was one of the most important contributors to the heterosis of EW-related traits. Consistent with the significant positive correlations between EW-related traits, 9 genomic regions with overlapped QTLs for different traits were found and were located on chromosomes 1 (1), 3 (2), 4 (3), 7 (1), 8 (1), and 9 (1). Compared to previous reports, we found that the genomic regions for heterosis were not always congruent between different hybrids, which suggested that the combination of heterotic loci in different hybrids was genotype-dependent. Collectively, these data provided further evidence that the potential utilization of QTLs for heterosis may be feasible by pyramiding if we treat the QTLs as inherited units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers.

The use of molecular markers to identify quantitative trait loci (QTLs) affecting agriculturally important traits has become a key approach in plant genetics-both for understanding the genetic basis of these traits and to help design novel plant improvement programs. In the study reported here, we mapped QTLs (and evaluated their phenotypic effects) associated with seven major traits (including...

متن کامل

Determination of QTLs Associated with Agronomic and Physiological Traits under Normal and Salinity Conditions in Barley

mapping the QTLs of agronomic and physiological traits, 149 double haploid (DH) lines from a cross between an Australian cultivar, Clipper (salt susceptible), and an Algerian landrace, Sahara3771 (salt tolerant), were evaluated under natural saline (Yazd Station, ECsoil=10-12.8 ds/m and ECwater= 9-10 ds/m) and normal (Karaj Station, ECsoil and ECwater ~2-2.5 ds/m) environments. There were remar...

متن کامل

QTL Mapping of Combining Ability and Heterosis of Agronomic Traits in Rice Backcross Recombinant Inbred Lines and Hybrid Crosses

BACKGROUND Combining ability effects are very effective genetic parameters in deciding the next phase of breeding programs. Although some breeding strategies on the basis of evaluating combining ability have been utilized extensively in hybrid breeding, little is known about the genetic basis of combining ability. Combining ability is a complex trait that is controlled by polygenes. With the ad...

متن کامل

Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize

Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with ...

متن کامل

Detection of quantitative trait loci for ear row number in F2 populations of maize.

Ear row number (ERN) is not only a key trait involved in maize (Zea mays L.) evolution but is also an important component that is directly related to grain yield. In this study, quantitative trait loci (QTLs) for ERN were detected across two F2 populations that were derived from a same cross between B73 with 16 rows (N = 233) and SICAU1212 with four rows (N = 231). As a result, 33 QTLs were ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017